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The chamigrene subclass of sesquiterpenes, characterized by a
spiro[5.5]undecane core, is an ever-growing family of natural
products (Figure 1).1 Well over 100 members have been isolated
thus far, and many of these compounds exhibit a diverse array of
biological activity.1c In particular, elatol (1),2 one of the most widely
studied chamigrenes, displays antibiofouling activity,3a,bantibacterial
activity (including human pathogenic bacteria),3c-e antifungal
activity,3f and cytotoxicity against HeLa and Hep-2 human carci-
noma cell lines.3g Despite the interesting bioactivity and compact
structure of these molecules, no general strategy for their preparation
has been developed, and to the best of our knowledge, no total
synthesis of elatol has been reported in the 33 years since its original
isolation.4,5

Structurally, elatol (1) consists of a densely functionalized A
ring bearing three stereocenters, including an all-carbon quaternary
stereocenter, which is vicinal to a second, nonstereogenic quaternary
carbon. Within the B ring is also a fully substituted chlorinated
olefin. We envisioned a strategy toward these challenging motifs
based on methodological advances recently reported by our
laboratories. Specifically, enantioselective decarboxylative allyla-
tion6 could generate the all-carbon quaternary stereocenter, while
ring-closing metathesis (RCM)7 could be employed to concomi-
tantly provide the tetrasubstituted olefin and the spirocyclic core
of 1 (Scheme 1). Importantly, this approach serves as a general
platform to access the chamigrene family.

We envisioned1 to ultimately arise from sequential reductive
olefin transposition and diastereoselective reduction ofR-bromoke-
tone10. In turn, compound10would be obtained from bromination
of the enone resulting from 1,2-addition of a methyl anion to
spirocycle11. Intermediate11 itself could be the product of RCM
of R,ω-diene 12. Although generation of a fully substituted
chlorinated olefin via RCM has not been previously reported,8 we
anticipated that the improved reactivity of catalyst227 (vide infra)
might be sufficient for this transformation. Access to12 would be
possible via enantioselective decarboxylative allylation of an
appropriately substituted vinylogous ester derivative (i.e.,13),
employing the Pd(0) complex of a phosphinooxazoline (PHOX)
ligand. This would constitute a previously unexplored substrate class
with this catalyst system.9 Finally, enol carbonate13 could be
derived from commercially available dimedone (14).

Our synthetic efforts began with the condensation of isobutyl
alcohol and dimedone (14) to provide known vinylogous ester15
(Scheme 2).10 Direct alkylation of vinylogous ester15with 4-iodo-
2-methyl-1-butene was sluggish; however, a two-step procedure
involving conjugate addition to methyl vinyl ketone (MVK)
followed by Wittig methylenation afforded olefin (()-16 in good
yield. Selective enolization of vinylogous ester (()-16and trapping
with chloroformate17 allowed access to enol carbonate13 in 73%
yield. In our initial attempt, application of our standard reaction
conditions11 for Pd-catalyzed asymmetric alkylation to enol carbon-
ate13provided desired alkylation adduct (+)-12, but in low yield.12

We reasoned that the poor reactivity of enol carbonate13 in the
enantioselective allylation reaction could stem from one of three
possibilities: (1) slow oxidative addition to the allyl carbonate
moiety, (2) slow decarboxylation to reveal the active enolate

intermediate, or (3) slow alkylation of the enolate intermediate to
provide the desired product12. In order to discern between these
scenarios, we ran a set of control reactions outlined in Scheme 3.
Exposure of enol carbonate13 to conditions developed in our
laboratories for enantioselective decarboxylative protonation13 led
to rapid formation of olefin16.14 Furthermore, removal of the
2-chloro substituent on the allyl fragment resulted in facile
decarboxylative allylation of enol carbonate19 to yield bis(olefin)
20. On the basis of these results, we concluded that slow alkylation,
not slow oxidative addition or decarboxylation, was most likely
the problematic step in this transformation.

In order to enhance the reactivity of ourπ-allyl Pd(II) electro-
phile, we attempted to increase its electrophilicity by incorporating
electron-withdrawing substituents into the PHOX ligand frame-
work.15 Ultimately, asymmetric alkylation employing ligand21 in
benzene at 11°C afforded the best balance between reactivity and

Figure 1. Examples of chamigrene natural products.

Scheme 1

Scheme 2 a

a dmdba) bis(3,5-dimethoxybenzylidene)acetone.
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selectivity, providing vinylogous ester12 in 82% yield and 87%
ee (Scheme 4). Gratifyingly, whenR,ω-diene12 was subjected to
our standard RCM reaction conditions with catalyst22, the desired
fully substituted chloroalkene (+)-11was produced in 97% yield.16

Addition of methyllithium in the presence of CeCl3 then provided
(+)-laurencenone B ((+)-7)17 after acid-mediated elimination and
hydrolysis.18 Enone (+)-7 was subsequently bis-halogenated with
Br2 to generate dibromide10 in g8:1 dr.19 Finally, the crude
R-bromoketone10was doubly reduced with DIBAL to afford elatol
(1) (3.9:1 syn:anti,20 11:1 SN2′:SN2). Overall, enantioenriched (+)-
laurencenone B ((+)-7) was prepared in seven steps and 34% yield
from dimedone (14), while enantioenriched (+)-elatol (1) was
prepared in nine steps and 11% yield.21

We have successfully developed a concise enantioselective route
to the chamigrene natural product family, culminating in the first
total syntheses of elatol (1) and (+)-laurencenone B ((+)-7), as
well as the first preparation of a fully substituted chlorinated olefin
via RCM. Moreover, we have demonstrated the ability of the key
enantioselective alkylation reaction to access sterically encumbered
enantioenriched vinylogous esters. The application of these methods
to the syntheses of other chamigrene natural products and a full
exploration of both vinylogous esters in enantioselective decar-
boxylative alkylation and vinyl chlorides in RCM are the focus of
ongoing studies.
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Scheme 3 a

a Conditions: (a) HCO2H, Pd(OAc)2 (10 mol %),18 (12.5 mol %), MS
4 Å, benzene, 40°C, (b) Pd(dmdba)2 (10 mol %),18 (13 mol %), benzene,
40 °C.

Scheme 4
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